7,221 research outputs found

    Transport and photochemical modeling. Studies of atmospheric species

    Get PDF
    A program of research studies related to the photochemistry, radiative transfer, and dynamics of the stratosphere is described. Investigations were conducted in two broad areas: (1) studies of the stratospheric processes and their response to external perturbations, and (2) analysis of satellite measurements in conjunction with theoretical models. Contemporary one dimensional photochemical, radiative-convective model was used to assess the impact of perturbations such as solar flux variability, increases in atmospheric carbon dioxide, chlorofluoromethanes and other greenhouse gases. Data from satellite experiments such as LIMS and SBUV, were used along with theoretical models to develop a climatology of trace species in the stratosphere. The consistency of contemporary ozone photochemistry was examined in the light of LIMS data. Research work also includes analysis of stratospheric nitrogen dioxide distributions from different satellite experiments, investigation of the wintertime latitudinal gradients in NO2, estimation of the stratospheric odd nitrogen level and its variability, and studies related to the changes in ozone in the Antarctic, and mid latitude Southern Hemisphere

    A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method

    Full text link
    In this paper, the effect of local defects, viz., cracks and cutouts on the buckling behaviour of functionally graded material plates subjected to mechanical and thermal load is numerically studied. The internal discontinuities, viz., cracks and cutouts are represented independent of the mesh within the framework of the extended finite element method and an enriched shear flexible 4-noded quadrilateral element is used for the spatial discretization. The properties are assumed to vary only in the thickness direction and the effective properties are estimated using the Mori-Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation theory. The influence of various parameters, viz., the crack length and its location, the cutout radius and its position, the plate aspect ratio and the plate thickness on the critical buckling load is studied. The effect of various boundary conditions is also studied. The numerical results obtained reveal that the critical buckling load decreases with increase in the crack length, the cutout radius and the material gradient index. This is attributed to the degradation in the stiffness either due to the presence of local defects or due to the change in the material composition.Comment: arXiv admin note: text overlap with arXiv:1301.2003, arXiv:1107.390

    Galaxy Galaxy Lensing as a Probe of Galaxy Dark Matter Halos

    Full text link
    Gravitational lensing has now become a popular tool to measure the mass distribution of structures in the Universe on various scales. Here we focus on the study of galaxy's scale dark matter halos with galaxy-galaxy lensing techniques: observing the shapes of distant background galaxies which have been lensed by foreground galaxies allows us to map the mass distribution of the foreground galaxies. The lensing effect is small compared to the intrinsic ellipticity distribution of galaxies, thus a statistical approach is needed to derive some constraints on an average lens population. An advantage of this method is that it provides a probe of the gravitational potential of the halos of galaxies out to very large radii, where few classical methods are viable, since dynamical and hydrodynamical tracers of the potential cannot be found at this radii. We will begin by reviewing the detections of galaxy-galaxy lensing obtained so far. Next we will present a maximum likelihood analysis of simulated data we performed to evaluate the accuracy and robustness of constraints that can be obtained on galaxy halo properties. Then we will apply this method to study the properties of galaxies which stand in massive cluster lenses at z~0.2. The main result of this work is to find dark matter halos of cluster galaxies to be significantly more compact compared to dark matter halos around field galaxies of equivalent luminosity, in agreement with early galaxy-galaxy lensing studies and with theoretical expectations, in particular with the tidal stripping scenario. We thus provide a strong confirmation of tidal truncation from a homogeneous sample of galaxy clusters. Moreover, it is the first time that cluster galaxies are probed successfully using galaxy-galaxy lensing techniques from ground based data.Comment: 8 pages, 5 figures, to appear in Moriond Proceedings, From Dark Halos to Ligh

    New observational Constraints on the Growth of the First Supermassive Black Holes

    Full text link
    We constrain the total accreted mass density in supermassive black holes at z>6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Msec observations of the Chandra Deep Field South, we achieve the most restrictive constraints on total black hole growth in the early Universe. We estimate an accreted mass density <1000Mo Mpc^-3 at z~6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive - as yet undetected - host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured and/or is due to black hole mergers as opposed to accretion or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high redshift seed formation models.Comment: ApJ Accepted, 10 pages, 7 figures, 1 table, in emulateapj forma
    corecore